並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 40 件 / 166件

新着順 人気順

FPGAの検索結果1 - 40 件 / 166件

  • 「量子理論の副産物に過ぎなかった」──東芝の「量子コンピュータより速いアルゴリズム」誕生秘話

    「量子理論の副産物に過ぎなかった」──東芝の「量子コンピュータより速いアルゴリズム」誕生秘話:「量子コンピュータとは何か」を問う“新たな壁”(1/5 ページ) 今、量子コンピュータの一種である「量子アニーリングマシン」で高速に解けるとされる「組合せ最適化問題」をより速く・大規模に解くべく、各社がしのぎを削っている。 米Googleと米航空宇宙局(NASA)が2015年に「従来のコンピュータより1億倍速い」と評した量子アニーラ「D-Wave」を作るカナダD-Wave Systems、量子アニーリングを模したアルゴリズムをデジタル回路上に再現する富士通と日立、光を用いて解く「コヒーレント・イジングマシン」を作るNTTの研究グループなどだ。IBMなどが作る「量子ゲート方式」の量子コンピュータを用いた組合せ最適化計算の研究も盛んだ。 各社が組合せ最適化計算に取り組むのは、これを高速に解けると交通渋

      「量子理論の副産物に過ぎなかった」──東芝の「量子コンピュータより速いアルゴリズム」誕生秘話
    • 書籍「作ろう!CPU」

      各ボードの詳細はこちらをご参照下さい。 この他にも、スイッチとLEDがそれぞれ4個以上搭載されているFPGAボードなら、ほぼ確実に動くと思われます。 いろいろな方への紹介文 本書の主な想定読者は、電気や回路や CPU について何も知らない方です。 しかし回路に詳しい方々からも、「こんな考え方があるのか!」という驚きの声を多数いただいております。 筆者として、本当に嬉しい限りです。 様々なバックグラウンドの方に楽しんでいただくために、以下に10通りの紹介文をひねり出したので、興味のある項目に目を通してもらえると幸いです。 電気や回路を全然知らない方へ プログラマーの方へ 情報学科の学生さんへ 論理回路を教えておられる先生方へ FPGAに挫折した経験のある方へ ハードウェア記述言語に詳しい方へ アナログ回路に詳しい方へ 物理に詳しい方へ 数学に詳しい方へ 人間の欲望を重視する方へ 電気や回路を

      • 【やじうまミニレビュー】 USB Type-Cケーブルなどの素性を一発チェックできる必携アイテム「USB CABLE CHECKER2」

          【やじうまミニレビュー】 USB Type-Cケーブルなどの素性を一発チェックできる必携アイテム「USB CABLE CHECKER2」
        • 本当に私の人生を変えた技術書10選 - FPGA開発日記

          年末ですね。年末に技術っぽいことを書いても誰も見ていないので、どうでもいいことを書こうと思います。 皆さん技術書は好きですか?好きですよね。読みもしないのに技術書典なんかに大挙して押しかけて、結局積読が増えていく。積んでいるとなんか落ち着くのかもしれません。 私は現在ハードウェア関連の技術者として働いているわけですが、短い人生の中で読んだ技術書の中で、本当に私の人生を変えてしまった技術書を思い出しながら紹介してみたいと思います。 あらかじめ断っておきますが、「名著」や「良い本」を紹介するのではなく、あくまでも私の人生を変えた本です。逆にいうと、あまり名著は出てきません。名著の紹介はすでにいろんなところでやられているので、そちらを見ていただければ。 1. 図解で分かるPCアーキテクチャのすべて(初版) 〈最新〉図解でわかる PCアーキテクチャのすべて 作者:小泉 修出版社/メーカー: 日本実

            本当に私の人生を変えた技術書10選 - FPGA開発日記
          • 世界初、中性子が引き起こす半導体ソフトエラー特性の全貌を解明~全電子機器に起こりうる、宇宙線起因の誤動作対策による安全な社会インフラの構築~ | ニュースリリース | NTT

            日本電信電話株式会社(本社:東京都千代田区、代表取締役社長:島田 明、以下「NTT」)、および国立大学法人北海道大学(北海道札幌市、総長:寳金 清博、以下「北海道大学」)は共同で、中性子のもつエネルギーごとの半導体ソフトエラー※1発生率※2を今までは測定がされていなかった10 meV~1 MeVの低エネルギー領域において、"連続的な"データとして実測することに成功し、その全貌を世界で初めて明らかにしました(図1)。 現在の社会インフラを支える電子機器においては、宇宙線(太陽フレアや銀河から飛来する放射線)に起因する誤動作であるソフトエラーの対策が不可欠です。中性子エネルギーごとのソフトエラー発生率の解明は、その対策を行う上で最も重要なものです。今後は、この結果を活用しソフトエラー対策をさらに進展させることで、より安全・安心な社会インフラの実現が可能となります。 本成果は米国東部時間2023

              世界初、中性子が引き起こす半導体ソフトエラー特性の全貌を解明~全電子機器に起こりうる、宇宙線起因の誤動作対策による安全な社会インフラの構築~ | ニュースリリース | NTT
            • 歳を取ったエンジニアとして腕力のある若手にどうやって立ち向かおうか考えた - FPGA開発日記

              この記事はFPGA開発日記の祝2,000記事到達の記念に書いているものです。 普段の記事と比べて非常にエモい内容となっております。 FPGA開発日記を始めたのが2015年の1月4日。それからおよそ5年と10か月で2,000記事に到達した。 計算してみると2,115日での2,000記事達成となっていた。我ながらよく頑張った。 ブログを書き始めてもう5年以上経った。5年も経てば周りの状況も変わるし、生活環境も変わる。 私も歳を取り、決して若いとは言えない年齢になった。昔のように徹夜で勉強とか実装はできなくなったし、肩は凝るし集中力は続かない。夜になるとすごく眠たくなる。仕事が終わったらすぐ眠たくなってしまい、趣味やブログを執筆する時間を取るのがとても難しくなってきた。 私が年を取れば取るほど、若い実装力のある、優秀な人たちが参入してきて、私の何倍ものスピードで成果を出していく。 私が持っている

                歳を取ったエンジニアとして腕力のある若手にどうやって立ち向かおうか考えた - FPGA開発日記
              • フルスクラッチから作って理解するQEMU (Rust編) - FPGA開発日記

                モチベーション なぜRustを選んだか? 私はQEMUは「アーキテクチャエミュレーション界のLLVM」だと思っている QEMUが高速な理由:TCG Binary Translation ゲスト命令(RISC-V) → TCG → ホスト命令(x86)の処理をRustで作ろう RISC-Vの命令をフェッチしてデコードする RISC-Vの命令をTCGに変換する TCGをx86に変換する 実装結果 Binary Translation実行を高速化するための様々なテクニック BasicBlock分まで複数命令をまとめて変換 TCG Block Chainingの実装 評価結果 TB Lookup and Jumpの実装 評価結果 まだ完成していないところ 一部の最適化はまだ未実装となっている ゲストアーキテクチャがx86のみとなっている。TCGによる複数プラットフォーム対応として、まずは環境のそろ

                  フルスクラッチから作って理解するQEMU (Rust編) - FPGA開発日記
                • パソコンを回路レベルで自作する (Intel x86 IA-32)

                  ~重要イベント一覧 (2019/06/22から)~ 06/22 作成開始 06/29 32bit加算だけ実行する状態機械が完成 07/17 UARTの送信機を作る 07/18 8bit加算ができるようになる 07/19 ModRM, SIB周りのアドレシングを作り込む 07/20 加算命令がIntel x86の仕様を完全に再現 07/25 加算以外の命令を、一気に48個作る 08/13 Hello Worldが動いた (writeシステムコールの作成) 08/21 自作CPU上で自作OSが動いた 08/27 自作CPU上の自作OSにシェルを実装 09/21 自作CPU上の自作OS上でテトリスが動いた

                    パソコンを回路レベルで自作する (Intel x86 IA-32)
                  • AV1リアルタイムハードウェアエンコーダを開発しました - dwango on GitHub

                    選定作業にはAOMが公開しているソフトウェアエンコーダaomを使用し、改造によってツールを削減したときの映像品質を比較しました。 映像品質は一般的にビットレートと客観/主観画質のバランスで表されます。 客観画質とは計算によって数値化した画質のことで、代表的な手法としてはPSNRやSSIMがあります。 主観画質とは人の目で映像を評価した画質のことです。 今回は、客観画質としてPSNRを用いた指標(RD性能)を用い、映像品質を比較しました。 PSNRには"30dBを下回ると低品質である"といった基準はありますが、人の目で見たときの評価と必ずしも一致するわけではありません。 そこで、主観画質の評価も並行して実施し、多角的に映像品質低下を防止しました。 選定結果 まず、Superblockサイズを64X64と128X128とで比較しました。 その結果、テストケースのうち約75%でRD性能に変化がな

                      AV1リアルタイムハードウェアエンコーダを開発しました - dwango on GitHub
                    • さくらインターネット、福岡大学と協力し 世界最速クラスのハードウェア 時刻同期(NTP)サーバーを自社開発 ~FPGAベースの公開NTPサービスをトライアル提供~ | さくらインターネット

                      さくらインターネット、福岡大学と協力し 世界最速クラスのハードウェア 時刻同期(NTP)サーバーを自社開発 ~FPGAベースの公開NTPサービスをトライアル提供~ インターネットインフラサービスを提供するさくらインターネット株式会社(本社:大阪府大阪市、代表取締役社長:田中 邦裕)は、私立総合大学の福岡大学と協力し、単体で約10ギガビット/秒(約1300万リクエスト/秒)の高負荷に耐え、Stratum1※1 NTP(Network Time Protocol) サーバーとして働く専用デジタル回路を設計から開発いたしました。また開発サーバーにて、FPGA※2上で動作させて提供する実験を開始しております。 当社データセンターで稼働する当開発サーバーと時刻表示 NTPとは、スマートフォン等を含む、ネットワークに接続される機器において、機器が持つ時計を正しい時刻へ同期するための通信プロトコルです。

                        さくらインターネット、福岡大学と協力し 世界最速クラスのハードウェア 時刻同期(NTP)サーバーを自社開発 ~FPGAベースの公開NTPサービスをトライアル提供~ | さくらインターネット
                      • 「NINTENDO64」互換機、2024年発売へ

                          「NINTENDO64」互換機、2024年発売へ
                        • CPUを自作したりコンピューターアーキテクチャを理解するためにおすすめの本の一覧 - /var/log/hikalium

                          hikaliumの独断と偏見で、積読は除いている。最近も結構新しい本が色々出ているので、それもいいかもしれないが、ある程度評価の定まった本を探したい場合に参考になれば。 ちなみに、hikaliumがセキュキャンでCPU自作を教えていたときのコードはここにある。参考にならないかもしれないが、おまけにどうぞ。 github.com ディジタル回路設計とコンピュータアーキテクチャ 無印(MIPS版) ARM版 RISC-V版 ハードウエア記述言語で実際にCPUをつくりながら、各アーキテクチャについても学べる良書。 MIPS版が広く知られているが、ARM版、RISC-V版も登場している。無印版はよくある技術書サイズだが、ARMとRISC-V版は大型本なので、そこらへんの好みとかも勘案するとよいかもしれない。 CPUの創り方 Amazon 表紙がメイドさんだが、侮ることなかれ。(と私は中学生の時にク

                            CPUを自作したりコンピューターアーキテクチャを理解するためにおすすめの本の一覧 - /var/log/hikalium
                          • 「スーパーコンピューターを20万円で創る」を2480円で創る #1 - Qiita

                            この記事は2022年天文情報学AdventCalendar12/19の記事です。とりあえずカレンダーを作ってみた者です。そして内容はネタ記事です。何というかすみません。 皆さんは「スーパーコンピュータ」と聞くと何を思い浮かべるでしょうか。今であれば富岳でしょうし、ちょっと前なら京、地球シミュレータ、とまぁ現在も比較的日本が頑張っているコンピューティングの一分野ではないかと思います。そもそもスーパーコンピュータとは何ぞや、という話もある訳ですが(そのあたりはWikipediaを参照していただくとして)、基本的には複雑なシミュレーションを高速に行う為に使われるコンピュータ、というところかと思います。 とにかく大量の演算をこなす事が特徴のスーパーコンピュータですから当然のように相当な予算が投入されてナンボの分野ではあるのですが、かつてシミュレーション天文学の専用計算機として僅か20万円で創られた

                              「スーパーコンピューターを20万円で創る」を2480円で創る #1 - Qiita
                            • 半導体業界における「IP」とは何なのかを説明したい - FPGA開発日記

                              「RISC-V」という言葉が徐々にエンジニア界隈に普及し始め、技術界隈のニュースサイトだけでなく、一般的なニュースを扱うような新聞社の記事でも見かけるようになってきました。例えば以下のような記事です。 www.nikkei.com 半導体エンジニアではない人がこのような記事を書く場合、「設計IP」について正しい知識を持っておかないと、少しおかしなことになってしまいます。しかしこれは記事を書いている記者だけを責めることは出来ません。半導体設計業界はソフトウェア開発業界に比べて小さな業界で、プレーヤの数も少なく、ネット上にあまり情報も出てきません。時事ネタを速攻で記事に起こさないといけない新聞記者が「IPってなんだっけ?」「リスクファイブってなんぞや?」ということをいちいち厳密に調べてられない、ということも理解できます。 そこで、非エンジニア(というか非半導体産業の方)でも理解できるように、R

                                半導体業界における「IP」とは何なのかを説明したい - FPGA開発日記
                              • Linux が動作する RISC-V CPU を自作した (2019 年度 CPU 実験 余興)

                                私が所属する東京大学理学部情報科学科では三年の冬学期に CPU 実験という実験授業が開講されています。本稿ではその簡単な説明をした後、その実験の一環として約一ヶ月ほど取り組んだ「Linux が動作する RISC-V CPU を自作するプロジェクト」で何をしたか、またどのような成果を得たかについて紹介したいと思います。 本稿を読むその前に 弊学科では「XX 年度に教養学部から理学部情報科学科に進学してきた学生」を「XXer」と呼ぶ文化があります。本稿ではこの表現を断りなく用います1。また私は普段 Web が好きでもっぱら Web セキュリティに関することを追いかけているだけのしがない学部 3 年生なので (私についての情報は ここ に大体まとまっています)、こういう低いレイヤのことは未だによく分かっていません。あくまで素人の記事だとご理解いただけると嬉しいです。誤りの指摘や質問があれば、ここ

                                  Linux が動作する RISC-V CPU を自作した (2019 年度 CPU 実験 余興)
                                • ゲームボーイ/GBA互換携帯ゲーム機「Analogue Pocket」海外発表。ゲームギア/ネオジオポケットカラーなどにも対応可能 - AUTOMATON

                                  アメリカのゲーム互換機メーカーAnalogueは10月17日、ゲームボーイ・ゲームボーイカラー・ゲームボーイアドバンス互換機「Analogue Pocket」を発表した。ブラックとホワイトの2色展開で、価格は199.99ドル(約2万2000円)。2020年に発売する。さらに、ゲームギア・ネオジオポケットカラー・Atari Lynxなどに対応するアダプターも別途販売するという。 Analogueは、これまでにファミコンやスーパーファミコン、メガドライブなどの互換機を手がけ、品質の高さやスタイリッシュなデザインなどにより人気を獲得してきたメーカーだ。今回発表されたAnalogue Pocketは、同社として初めて手がける携帯ゲーム互換機。ゲームボーイ・ゲームボーイカラー・ゲームボーイアドバンスのカートリッジを挿してプレイできる。また上述したように、別売りのアダプターを介してゲームギア・ネオジオ

                                    ゲームボーイ/GBA互換携帯ゲーム機「Analogue Pocket」海外発表。ゲームギア/ネオジオポケットカラーなどにも対応可能 - AUTOMATON
                                  • Nintendo Switchからデジタル音声を「直接」取り出す。FPGAで! - Zopfcode

                                    Switchはイヤホン出力の音がひどいことで有名だ*1。 ブズズズズ………バババババ…… と熱雑音では明らかに説明できない周辺回路のお気持ちが音となって伝わってくる。 そこでUSB DACを使いたいのだが、どうも手持ちだとハイエンド機に限って動かない*2。別なやり方でデジタル音声を取り出さなければ。 取り出し方は様々ある。 ドックのHDMI出力 + S/PDIFスプリッター(TVモード必須) Switch用Bluetoothトランスミッター(ぶっちゃけこれが一番オススメ) Switchが認識できるUSB DDCで同軸デジタルなどにする Raspberry PiのUACガジェット Switchに直に接続できないDACを使いたい場合は、DDC必須*3でゴテゴテしてしまう。 「それなら本体に流れるデジタル信号(I2S)を直接取り出して、S/PDIFに変換するしかないよね!」と思いついた26の夜。

                                      Nintendo Switchからデジタル音声を「直接」取り出す。FPGAで! - Zopfcode
                                    • ハードウェアの発展を阻害しているのは「マザーボード」だという指摘、マザーボードに代わる次世代技術とは?

                                      By maxxyustas 電気工学などの専門職団体IEEEが運営するハードウェア・エンジニアリングに関するニュースサイトIEEE Spectrumが「さようなら、マザーボード」と題して、「マザーボードのようなプリント基板こそがハードウェアの発展を阻害している」と主張しています。 Goodbye Motherboard Hello Siliconinterconnect Fabric - IEEE Spectrum https://spectrum.ieee.org/computing/hardware/goodbye-motherboard-hello-siliconinterconnect-fabric スマートフォンやノートPCなどのデバイスは可能な限りの「小ささ」が求められています。しかし、問題点は「プリント基板」にあるとのこと。スマートフォンなどの中核部品であるSoCを見ると、そ

                                        ハードウェアの発展を阻害しているのは「マザーボード」だという指摘、マザーボードに代わる次世代技術とは?
                                      • どのように論文を読むか - FPGA開発日記

                                        仕事柄論文を読む機会は多くあって、自分なりの読み方、まとめ方、深堀の仕方などはある程度ルーティンがあります。しかしそれが本当に最適解なのかどうかは分かりません。もっと自分に合ったやり方があるかもしれないし、今の方法がベストなのかもしれない。 "How to read a paper" という、論文、というか論文形式のメモがあり、これは当時カナダのWaterloo大学にいたSrinivasan Keshav先生が長年の経験からどのように論文を読めばよいのかというのをまとめたものになっています。これを読んでみて、なるほどなと思ったのでメモとして残しておきます。 ちなみに検索するとこの先生は現在はケンブリッジ大学の先生のようです。よく見てみると日本語に訳されている方もいるようで、原文と日本語訳は一読の価値があります。 http://svr-sk818-web.cl.cam.ac.uk/kesha

                                          どのように論文を読むか - FPGA開発日記
                                        • 「サイゼリヤで1000円あれば最大何kcal摂れるのか」を自作CPU上で解いてみた

                                          サイゼリヤに1000円を持って食事に言ったとき、どの料理を頼めば最大何kcalの食事をすることができるかを、FPGAに構築した自作CPU上で計算しました。 自作CPU学校の演習課題としてFPGA上でCPU(プロセッサ)を作成しました。具体的には、PowerMedusaボードを利用し、このボード上にあるFPGAをVerilogを用いてプロセッサとして動作させました。 5段パイプラインや簡易的な分岐予測(不成立)などが実装されています。 この演習では「SIMPLE」と呼ばれるアーキテクチャが予め与えられます。 SIMPLEアーキテクチャは16bit=1wordのワードマシンで、RISC的なISAを持っています1。基本的にはこの仕様を満たすプロセッサを作成するのですが、必要に応じて自由に仕様を変更しても良いことになっています。私の班ではADDIやCMPIなどの即値演算命令を追加したほか、無条件分

                                            「サイゼリヤで1000円あれば最大何kcal摂れるのか」を自作CPU上で解いてみた
                                          • AMD、ザイリンクスを3兆6000億円で買収 株式交換で - 日本経済新聞

                                            【シリコンバレー=佐藤浩実】米半導体大手のアドバンスト・マイクロ・デバイス(AMD)は27日、同業の米ザイリンクスを買収すると発表した。株式交換による買収額は350億ドル(約3兆6000億円)。中長期で成長が見込めるデータセンターや通信分野の事業基盤を強化し、米インテルや米エヌビディアに対抗する。 規制当局の承認取得を進め、2021年末までの統合をめざす。買収はすべて株式交換で実施し、ザイリンクス株1株に対してAMD株1.7234株を割り当てる。 AMDはパソコンやサーバー向けのCPU(中央演算処理装置)とGPU(画像処理半導体)を手掛け、今年9月末までの12カ月間の売上高は86億ドルだった。同じ期間の売上高が780億ドルだった競合のインテルと比べると規模は小さいが、新製品の売れ行きが好調で足元ではシェアを伸ばしている。 ザイリンクスは「FPGA」と呼ぶ半導体に強みを持つ。FPGAは回路の

                                              AMD、ザイリンクスを3兆6000億円で買収 株式交換で - 日本経済新聞
                                            • NVIDIA、1パッケージに2ダイの新型GPU「Blackwell」。AI性能は学習4倍、推論30倍に

                                                NVIDIA、1パッケージに2ダイの新型GPU「Blackwell」。AI性能は学習4倍、推論30倍に
                                              • 個人で作る自作基板入門 - karaage. [からあげ]

                                                個人で基板を作りました 個人で基板を作りました。実は、昔(5年くらい前)はハードウェアエンジニアだったので、一応元プロ(多分、あんまり自信ないです)なのですが、個人では初めて基板設計しました。 自分の場合は、仕事だと基板自体の設計(アートワークと言います)は、ほとんど外注さん任せですし、基板の製造も会社でメーカーやルールはほとんど決まっていたので、個人でやるのは、色々と初めての経験ばかりでした。 というわけで何か良さそうな本はないかな、と思い買ったのがMaker Faire等様々なMaker系イベントに出展されているKimio Kosakaさんの以下のテキストでした。 追記:最新のKiCAD 6に対応したバージョンも出ています。 実は、この本が良すぎてほとんどこの本の通りにやったら、基板が出来てしまいました(笑)なので、初心者はKimio Kosakaさんの本を買いましょう。 この記事では

                                                  個人で作る自作基板入門 - karaage. [からあげ]
                                                • 「作って学ぶコンピュータアーキテクチャ」の環境を再現するためのDockerイメージをリリースします - FPGA開発日記

                                                  「作って学ぶコンピュータアーキテクチャ」(いわゆるRISC-V + LLVM本)は書籍執筆時の状況と出版時のツールチェインの状況がかなり変わってしまっており、各所で迷惑をかけてしまっています。 確実にLLVMビルド + シミュレーションを行うために、ツールチェインを含んだDockerイメージをリリースします。 github.com 大きく分けて4つのイメージを用意しています。 ubuntu_2204 Ubuntu 22.04の環境を使用し、新しいRISC-Vツールを使用したDocker環境です 本書で説明している実行コマンド列と大きく異なっている場所があります LLVMリポジトリはコンテナ内にダウンロード済みです(コンテナ容量削減のためビルドは行っていません) 最終的なバイナリのみ必要な方向けです ubuntu_2204_onlyenv Ubuntu 22.04の環境を使用し、新しいRIS

                                                    「作って学ぶコンピュータアーキテクチャ」の環境を再現するためのDockerイメージをリリースします - FPGA開発日記
                                                  • 「ゼロからのOS自作入門」の副読本的記事

                                                    最初に 「ゼロからのOS自作入門」を実践するための、環境構築方法及びコマンドリストと実行結果のメモです。最短で実行したい方、うまく動かすことができない人用の記事となります。 書籍に関する感想は、以下ブログ記事に書いているので、書籍自体を買おうか迷っている人はこちらを参考にしてみてください。 本記事は「ゼロからのOS自作入門」を読んで、個人的にまとめたものとなります。内容に関して、もし問題や誤りがあった場合の文責は私にありますので、この記事に関しての疑問は私に問い合わせください。もちろん書籍自体の質問は、書籍のサポートに連絡ください。 この記事を読むと、書籍を読まなくてもOSを動かすことはできます。ただ、書籍を読みながら自分で理解したり改造したりしながら動かさないと何も身につかないと思うので、興味ある人は書籍を買いましょう。価格の何倍もの価値がある良書だと思います。 ゼロからのOS自作入門

                                                      「ゼロからのOS自作入門」の副読本的記事
                                                    • 東芝 研究開発センター:研究開発ライブラリ 世界最速・最大規模の組合せ最適化を可能にする画期的なアルゴリズムの開発について-物流・創薬など社会課題を短時間で解決するサービスプラットフォームの構築に向けて-

                                                      情報通信プラットフォーム / 知能化システム 前のページに戻る 世界最速・最大規模の組合せ最適化を可能にする画期的なアルゴリズムの開発について -物流・創薬など社会課題を短時間で解決するサービスプラットフォームの構築に向けて- 当社は、物流における効率的な配送ルートの探索や新薬開発における最も有効な分子構造の決定、収益性の高い金融商品の組合せなど膨大な組合せパターンの中から最良のものを選び出す組合せ最適化技術において、従来方式の約10倍となる世界最高速度、世界最大規模の最適化に成功しました。 本技術「シミュレーテッド分岐アルゴリズム」は、従来の技術では困難であった複雑で大規模な組合せ最適化問題の高精度な近似解(良解)の短時間導出が可能となるだけでなく、既存の計算機を活用した低コストでの大規模化を可能にするものであり、現在の最適化プロセスを一変させる可能性があると考えられます。 シミュレーテ

                                                      • 【動画追加】「東京ゲームショウ2023」にFPGAベースのレトロゲーム互換機を出展した本当の狙いはなにか? TASSEI社長Adrew Steel氏に直撃インタビュー【TGS2023】 - レトロゲームで遊ぼう!

                                                        2023年9月21日から24日まで、幕張メッセで開催された日本最大のゲームイベント「東京ゲームショウ2023」。そこで、初日からある界隈をざわつかせていたのがTASSEIこと建成電気のブースでした。こちらで展示されていたのは、ニンテンドー3DSの互換機や、FPGAでセガサターンにPlayStation 2、ファミコンなどを動かしているデモ機です。 ▲「東京ゲームショウ2023」に出展していた建成電気のブース。比較的目立つ位置に場所を構えていました。グループの本社は中国深センを拠点にするDashine Electronicsで、達成電気はその日本本社として設立された企業です。今回同社が「東京ゲームショウ2023」で、こうした互換機を出展することになった狙いはなんだったのか、同ブースにいた代表取締役社長のAdrew Steel氏にお話をお伺いしてきました。 ▲建成電気 代表取締役社長のAdre

                                                          【動画追加】「東京ゲームショウ2023」にFPGAベースのレトロゲーム互換機を出展した本当の狙いはなにか? TASSEI社長Adrew Steel氏に直撃インタビュー【TGS2023】 - レトロゲームで遊ぼう!
                                                        • 「7nmの半導体」に7nmの箇所はどこにもなかった 半導体のプロセスルールとは一体何か? | JBpress (ジェイビープレス)

                                                          (湯之上 隆:技術経営コンサルタント、微細加工研究所所長) 最先端の半導体メーカーはどこか? 現在、微細化の最先端を競っているのは、PCやサーバー用プロセッサのチャンピオンである米インテル、自社のスマホ「GALAXY」用にプロセッサを製造しているメモリのチャンピオンの韓国サムスン電子、製造専門のファウンドリのチャンピオン、台湾TSMCの3社である。 この3社のどこが微細化で先行しているのだろうか? 筆者も寄稿している半導体業界誌の「EE Times Japan」の記事をいくつか挙げてみよう。 ・『遅れに遅れて、ようやく出荷:Intelが10nmプロセスの第10世代「Core」プロセッサを発表』(EE Times Japan、2019年8月6日、) ・『TSMCが年間投資額を引き上げ:5nm/7nmチップの需要を後押しするのは「5G」』(EE Times Japan、2019年7月26日、)

                                                            「7nmの半導体」に7nmの箇所はどこにもなかった 半導体のプロセスルールとは一体何か? | JBpress (ジェイビープレス)
                                                          • ソフトウェア・エンジニアのためのFPGA入門(1) どうしていまFPGAなのか、そしてFPGAとは何か?

                                                            IoTやAIといったテクノロジーの進歩とともに、最近では、これまでハードウェアに触れてこなかったソフトウェア・エンジニアもFPGAを知る必要がある……、としばし論じられるようになってきた。そうした現状を踏まえ、この連載では、なぜソフトウェア・エンジニアがFPGAを学ぶ必要があるのか、FPGAとは何か、またその基本的な仕組みや構造を3回に分けて紹介する。 なぜソフトウェアのエンジニアがFPGAを学ぶ必要があるのか? ソフトウェア・エンジニアがいまからFPGAを学ぶ必要性について定量的に論じることは難しい。FPGAの設計手法やコンパイラ(※1)は日々進歩しており、既存のソフトウェア(※2)をそのままFPGA用にコンパイルできるケースも増えてきた。CPU(※3)とFPGAが搭載されたシステム上で、どのプログラムをどちらのハードウェアで実行するかを最適化する研究も以前から行われており、近い将来、多

                                                              ソフトウェア・エンジニアのためのFPGA入門(1) どうしていまFPGAなのか、そしてFPGAとは何か?
                                                            • 理研、創薬専用スパコン開発 「RISC-V」アーキテクチャ採用、10万原子の挙動再現

                                                              理研の研究チームは、原子間に働く力の計算に特化したアルゴリズムと専用ハードウェアを開発。専用計算のプロセッサには、オープンソースのアーキテクチャ「RISC-V」を採用した。「RISC-Vをベースとする実用大規模システムとしては世界初」(理研)という。 これにより、汎用のスパコンではこれまで計算に1年3カ月掛かっていた10万個の原子の100マイクロ秒間のシミュレーションを、3カ月に短縮できるとしている。 創薬探索をスパコンで計算するメリットの一つは、新薬の候補となる分子を実際に合成しなくても、構造式だけでその標的となるタンパク質との相互作用や構造変化を調べられること。 しかし、タンパク質を構成する原子の数や、タンパク質に作用する新薬の分子、水分子の数は膨大で、それらのシミュレーションには膨大な計算が必要となる。 理研は、「既存の手法では、スパコン(専用計算機)の性能が上がっても、残りの計算を

                                                                理研、創薬専用スパコン開発 「RISC-V」アーキテクチャ採用、10万原子の挙動再現
                                                              • 「プログラマーのためのCPU入門」を買いました - FPGA開発日記

                                                                面白そうなので買ってみました。物理本は送料が意外と高かったので電子書籍版を買いました。 https://www.lambdanote.com/products/cpu プログラマーのためのCPU入門 ― CPUは如何にしてソフトウェアを高速に実行するかwww.lambdanote.com ざっくりと眺めましたが、タイトルに偽りなし、ソフトウェアエンジニアにとって、ハードウェアをどのように理解すればよいか、ということに重きが置かれています。これでハードウェアが書けるようになるというわけではないので、そこは勘違いしないようにしたい。 実際問題、ソフトウェアエンジニアの人たちは、サービスの速度向上を図りたいとき、どのようなアプローチをとっているのだろう?というのは興味があるところです。まさかフロントエンドエンジニアが「このサブルーチンはこういう命令に変換されるから...」ということを考えてプログ

                                                                  「プログラマーのためのCPU入門」を買いました - FPGA開発日記
                                                                • エッジで機械学習ってなんだろう -ブラウザ、スマホ、IoT機器での推論を概観する- - Qiita

                                                                  本内容は、技術書典7 合同本『機械学習の炊いたん2』収録の、「エッジで機械学習」記事を公開したものです。内容は2019年9月時点の調査等に基づきます。 最近Raspberry Pi 4の検証結果などをみていると、エッジ、かつCPUでもそれなりの速度で動くケースもみられます。またこの後にM5StickV(K210)などを触りましたが、専用チップも使い所があります。今後、それらの動きもできれば補足したいと思います。 9/12-22に開催された技術書典9では、新刊『機械学習の炊いたん3』を頒布しました。私は、「AIエンジニア、データサイエンティストのための経営学、ソフトウェア工学」を寄稿しています。他にも機械学習のビジネス、エンジニアリング、数理までもりだくさん。気になられたら、ぜひご覧ください! 他にも、技術書典9「機械学習、データ分析」系の新刊リスト - Qiitaの通り、たくさんの本が出品

                                                                    エッジで機械学習ってなんだろう -ブラウザ、スマホ、IoT機器での推論を概観する- - Qiita
                                                                  • インテル、オープンな命令セットを推進する「RISC-V 」に最高位メンバーとして加盟。RISC-VベースのFPGAチップも提供開始など、RISC-Vへのコミットを明確に

                                                                    インテル、オープンな命令セットを推進する「RISC-V 」に最高位メンバーとして加盟。RISC-VベースのFPGAチップも提供開始など、RISC-Vへのコミットを明確に プロセッサのオープンな命令セットを推進する団体「RISC-V International」は、同団体の最高位メンバーであるプレミアメンバーシップとして米インテルが加盟することを発表しました。 これに伴い、Intel FoundryのバイスプレジデントBob Brennan氏がRISC-VのBoard of Directors(取締役会)および技術的な方向性を決めるテクニカルステアリングコミッティの一員となります。 Intel has been a leader in microprocessor innovation for decades and today’s announcements signal that mas

                                                                      インテル、オープンな命令セットを推進する「RISC-V 」に最高位メンバーとして加盟。RISC-VベースのFPGAチップも提供開始など、RISC-Vへのコミットを明確に
                                                                    • 【福田昭のセミコン業界最前線】 「酸化ガリウム」からはじまる日本の半導体産業“大復活”

                                                                        【福田昭のセミコン業界最前線】 「酸化ガリウム」からはじまる日本の半導体産業“大復活”
                                                                      • AMDがXilinxを買収か? 複数の米国メディアが報道

                                                                        AMDがFPGA大手Xilinxの買収に向けて協議を進めていると、Wall Street Journal(WSJ)をはじめとする複数の米国メディアが報じている。 これらの報道によると、買収額は300億ドルを超す見込みだとのことで、10月12日週にも両社の間で合意が取れ、正式発表される可能性があるという。ただし、かつて両社は買収交渉を行ったものの行き詰まりを迎え、最近になってようやく協議を再開したといういきさつがあり、この話自体が破談になる可能性もあるという。 ちなみにAMDの競合であるIntelは2015年、Xilinxの競合でFPGA業界2位のAlteraを買収。FPGAをいち早く自社ポートフォリオに組み入れている。一方のAMDは、その間、Intelがプロセスの微細化で躓いているのをしり目にTSMCの先端プロセスを活用することでCPU市場での存在感を増してきており、今回のXilinx買収

                                                                          AMDがXilinxを買収か? 複数の米国メディアが報道
                                                                        • ルネサスはなぜFPGAに参入したのか? その真意をキーマンに聞く

                                                                          ルネサス エレクトロニクスがFPGAに参入することを2021年11月に表明した。FPGAというと、XilinxとIntel(旧Altera)が市場を二分する存在であり、圧倒的な存在感を有している。なぜ、ルネサスがそんなFPGA市場に参入することを決めたのか。キーマンである同社IoT・インフラ事業統括本部 グローバル営業統括部 ヴァイスプレジデントの迫間幸介氏に、参入の真意を聞いた。 ルネサス エレクトロニクス IoT・インフラ事業統括本部 グローバル営業統括部 ヴァイスプレジデントの迫間幸介氏 Dialogが手掛けてきたGreenPAK もともとルネサスが提供しようとしている「ForgeFPGA」という製品は、同社が2021年8月末に買収を完了したDialog Semiconductorが開発を進めていたものとなる。Dialogは、従来よりディスクリートアナログやアナログICの機能をカスタ

                                                                            ルネサスはなぜFPGAに参入したのか? その真意をキーマンに聞く
                                                                          • Pocket - Analogue

                                                                            Meet Analogue Pocket. A multi-video-game-system portable handheld. A digital audio workstation with a built-in synthesizer and sequencer. A tribute to portable gaming. Out of the box, Pocket is compatible with the 2,780+ Game Boy, Game Boy Color & Game Boy Advance game cartridge library. Pocket works with cartridge adapters for other handheld systems, too. Like Game Gear. Neo Geo Pocket Color. Ata

                                                                              Pocket - Analogue
                                                                            • 量子コンピュータって何? 動作の仕組みや開発ロードマップ、未来像を解説

                                                                              現在のコンピュータよりはるかに強力な計算能力を持つ量子コンピュータ。少しずつ実用化に向けて研究開発が進んでおり、興味を持ち始めている方もいるのではないでしょうか。今回はその種類や仕組み、将来どのように使われるのかを解説した『絵で見てわかる量子コンピューターの仕組み』より、量子コンピュータの基礎知識を紹介します。 本記事は『絵で見てわかる量子コンピューターの仕組み』の「第1章 量子コンピュータ入門」を抜粋したものです。掲載にあたり、一部を編集しています。 1.1 量子コンピュータって何? 量子コンピュータは、これまでのコンピュータとは異なる新しい計算機です。最初に、量子コンピュータがどのような計算機なのかその位置付けを説明します。 計算とは何か? 計算とはなんでしょう? 小学1年生の頃、算数を習い始めたときのことを思い出してください。1から9までの数字を習い、足したり引いたり掛けたり割ったり

                                                                                量子コンピュータって何? 動作の仕組みや開発ロードマップ、未来像を解説
                                                                              • 待った甲斐があった!「アナログ・ポケット」は最高の一言

                                                                                待った甲斐があった!「アナログ・ポケット」は最高の一言2021.12.20 12:00164,812 Andrew Liszewski - Gizmodo US [原文] ( そうこ ) このレトロ感が逆に新しい! 最近はガジェットもファッションもレトロ復活ブームですが、若い世代にとっては「復活」ではなく、初めてみる新しく新鮮なモノなんです。なのでおじさんおばさんがしたり顔で「懐かしいねぇ。これ昔はさぁ」なんて語るのは野暮なんでしょうね。…野暮でもいいから、言わせて! この画面の色味なっっっっつかしい! 米Analogue社が開発するゲーム機「Analogue Pocket(アナログ・ポケット)」は、ゲームボーイなどかつて一世を風靡したゲーム機と互換性をもつ、レトロゲーマーには夢のような端末です。全世代のゲームボーイカセットを実際に挿して遊べるのが胸熱。発表されてからずいぶんと時間がたって

                                                                                  待った甲斐があった!「アナログ・ポケット」は最高の一言
                                                                                • RISC-Vのハイパーバイザー拡張の仕様書を(ほぼ)日本語化したので公開する - FPGA開発日記

                                                                                  RISC-Vのハイパーバイザー拡張の仕様がかなり固まってきた。現在は0.6.1が公開されている。 Hypervisor Extension, Version 0.6.1 github.com とりあえず、上記の資料を読みながらちまちまと日本語化してみた。これは別に営利目的などではなく、完全に自分の趣味で理解のために翻訳してみたかったところがある。しかし翻訳しながら「なんじゃこりゃ?」な部分はとりあえず飛ばして先に進んだりしたので、すべて理解をしているかというとそれは違う。また復習しないと。 とりあえずSpikeの実装とKVMのRISC-V移植版を勉強しながら、実際の実装を学んでいくようにしていきたい。 RISC-V ハイパーバイザー拡張 日本語版 msyksphinz-self.github.io とりえあず、Google翻訳には頼らず、99%は自力で翻訳したが、おかげてTypoやら、誤訳

                                                                                    RISC-Vのハイパーバイザー拡張の仕様書を(ほぼ)日本語化したので公開する - FPGA開発日記